eQube™ Ultra High Impedance Capacitive Ground Sensors

- **eQube™ Functions on Surface with No Ground Prep**
 - No burial, no ground modification
- **Enables Surveys Over Highly Resistive Ground:**
 - Ultra Dry, Frozen, Desert, Resistive Rock
- **Sensing Plate Does Not React Chemically With the Ground:**
 - No effect of ground water content, ground temperature
 - No degradation of contact over time
- **Active Cable Drivers and Triple Twisted Pair Cable Reduce Noise Pickup in Signal Lines and Coupling to the Ground**
- **6-Channel GPS Synchronizes Data Acquisition System,** with Wireless Output and Integrated Power

eQube™ Capacitive Electric Field Sensors

- **Improved Sensitivity via Elimination of Electrochemical Reactions**
 - **AT 10 m SPACING WITH COHERENT CANCELLATION TO 7 nV/m√Hz at 10 Hz**
 - **AT ~0 m SPACING SHOWING TWO 2 CHANNELS AT THE INTERNAL NOISE FLOOR OF 70 nV/m√Hz at 10 Hz**

Ultra Dry Ground Conditions

- **1 μV/3Hz = 50 nVrms/m in 0.1 to 100 Hz band**
- **Conventional Electrodes Unable to Operate on Ultra Dry Sand**
- **Pb/PbCl₂ unable to establish a galvanic contact**
- **eQube™ Sensors Perform Well on Ultra Dry Sand**

Experimental data for a pair of eQube™ sensors measuring an applied E-field in earth with impedances of the sensor input ranging from 100 Ω to 4 MΩ. The average difference in recorded amplitude over the 4 x 10⁴ range of resistance is within 0.2% from 0.1 Hz to 100 Hz, while the phase difference from the known signal is less than 1 mrad from 0.1 Hz to 100 Hz except for 4 MΩ sand, for which it is still less than 5 mrad.

This work benefited from the advice of Professor Steven Constable of the Marine EM Laboratory at the Scripps Institution of Oceanography, and Professor Frank Morrison at the University of California at Berkeley and was supported in part by the US Navy, the NSF, and DARPA.

©GroundMetrics March 2012